48 research outputs found

    Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis

    Get PDF
    Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process

    Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals

    Get PDF
    A large-scale GWAS provides insight on diabetes-dependent genetic effects on the glomerular filtration rate, a common metric to monitor kidney health in disease.Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.</p

    Deep brain stimulation targeting the fornix for mild Alzheimer dementia: design of the ADvance randomized controlled trial

    No full text
    Kathryn B Holroyd,1 Lisa Fosdick,2 Gwenn S Smith,1 Jeannie-Marie Leoutsakos,1 Cynthia A Munro,1 Esther S Oh,1 Kristen E Drake,2 Paul B Rosenberg,1 William S Anderson,1 Stephen Salloway,3&ndash;5 J Cara Pendergrass,6 Anna D Burke,7 David A Wolk,8 David F Tang-Wai,9&ndash;11 Francisco A Ponce,12 Wael F Asaad,13,14 Marwan N Sabbagh,15 Michael S Okun,16 Gordon Baltuch,17 Kelly D Foote,18 Steven D Targum,2,6 Andres M Lozano,10,11 Constantine G Lyketsos1 1Johns Hopkins University Memory and Alzheimer&#39;s Treatment Center, Baltimore, MD, 2Functional Neuromodulation Ltd, Minneapolis, MN, 3Department of Neurology, Butler Hospital, 4Department of Neurology, Rhode Island Hospital, 5Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, 6Clintara LLC, Boston, MA, 7Banner Alzheimer&#39;s Institute, Phoenix, AZ, 8Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; 9Department of Neurology, 10Department of Neurosurgery, University of Toronto, 11Division of Neurology, University Health Network Memory Clinic, Toronto, ON, Canada; 12Division of Neurological Surgery, Barrow Neurological Institute, St Joseph&#39;s Hospital and Medical Center, Phoenix, AZ, 13Department of Neurosurgery, Rhode Island Hospital, 14Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, 15Banner Sun Health Research Institute, Sun City, AZ, 16Center for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida &ndash; Gainsville, Gainsville, FL, 17Center for Functional and Restorative Neurosurgery, University of Pennsylvania, Philadelphia, PA, 18Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainsville, FL, USA Background: There are currently few available treatments and no cure for Alzheimer disease (AD), a growing public health burden. Animal models and an open-label human trial have indicated that deep brain stimulation (DBS) of memory circuits may improve symptoms and possibly slow disease progression. The ADvance trial was designed to examine DBS of the fornix as a treatment for mild AD. Methods: ADvance is a randomized, double-blind, placebo-controlled, delayed-start, multicenter clinical trial conducted at six sites in the US and one site in Canada. Eighty-five subjects initially consented to be screened for the trial. Of these, 42 subjects who met inclusion and exclusion criteria were implanted with DBS leads anterior to the columns of the fornix bilaterally. They were randomized 1:1 to DBS &ldquo;off&rdquo; or DBS &ldquo;on&rdquo; groups for the initial 12 months of follow-up. After 1 year, all subjects will have their devices turned &ldquo;on&rdquo; for the remainder of the study. Postimplantation, subjects will return for 13 follow-up visits over 48 months for cognitive and psychiatric assessments, brain imaging (up to 12 months), and safety monitoring. The primary outcome measures include Alzheimer&#39;s Disease Assessment Scale &ndash; cognitive component (ADAS-cog-13), Clinical Dementia Rating sum of boxes (CDR-SB), and cerebral glucose metabolism measured with positron emission tomography. This report details the study methods, baseline subject characteristics of screened and implanted participants, and screen-to-baseline test&ndash;retest reliability of the cognitive outcomes. Results: Implanted subjects had a mean age of 68.2 years, were mostly male (55%), and had baseline mean ADAS-cog-13 and CDR-SB scores of 28.9 (SD, 5.2) and 3.9 (SD, 1.6), respectively. There were no significant differences between screened and implanted or nonimplanted subjects on most demographic or clinical assessments. Implanted subjects had significantly lower (better) ADAS-cog-11 (17.5 vs 21.1) scores, but did not differ on CDR-SB. Scores on the major outcome measures for the trial were consistent at screening and baseline. Conclusion: ADvance was successful in enrolling a substantial group of patients for this novel application of DBS, and the study design is strengthened by rigorous subject selection from seven sites, a double-blind placebo-controlled design, and extensive open-label follow-up. Keywords: deep brain stimulation, Alzheimer disease, fornix, methods, clinical trial

    Renal ACE2 expression and activity is unaltered during established hypertension in adult SHRSP and TGR(mREN2)27

    Get PDF
    Differential renal expression of a homolog of the angiotensin-converting enzyme (ACE), that is, ACE2, has been implicated as a genetic basis of polygenetic hypertension in the stroke-prone spontaneously hypertensive rat model. However, data on the role of ACE2 in hypertension are still inconclusive. Therefore, we analyzed kidney ACE2 mRNA, ACE2 protein and ACE2 enzyme activities in the adult polygenetic stroke-prone spontaneously hypertensive rat (SHRSP) and the monogenetic TGR(mREN2)27 rat models, in comparison with their normotensive reference strains, Wistar-Kyoto (WKY) and Spraque-Dawley (SD) rats, respectively. Kidney ACE2 mRNA was studied using quantitative real-time reverse transcriptase-PCR (RT-PCR) in cortex and medulla, whereas protein expression was scored semiquantitatively in detail in different renal structures using immunohistochemistry. Furthermore, total renal tissue ACE2 activity was measured using a fluorimetric assay that was specified by the ACE2 inhibitor DX600. In SHRSP and homozygous TGR(mREN2)27 rats with established hypertension, kidney ACE2 mRNA, protein and tissue ACE2 activities were not different from their respective WKY and SD reference strain, respectively. In addition, when we looked at renal localization, we found ACE2 protein to be predominantly present in glomeruli and endothelium with weak staining in distal and negative staining in proximal tubuli. Thus, our data challenge previous work that implicates ACE2 as a candidate gene for hypertension in SHRSP by reporting a significant reduction of ACE2 in the kidneys of SHRSP. Taken together, renal ACE2 is not altered in the SHRSP and TGR(mREN2)27 genetic rat models with established hypertension. Hypertension Research (2010) 33, 123-128; doi: 10.1038/hr.2009.191; published online 20 November 200
    corecore